Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470998

ABSTRACT

Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.


Subject(s)
Active Transport, Cell Nucleus/drug effects , Atorvastatin/pharmacology , COVID-19 Drug Treatment , Ivermectin/pharmacology , SARS-CoV-2/drug effects , alpha Karyopherins/metabolism , A549 Cells , Actin Cytoskeleton/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Chlorocebus aethiops , Drug Repositioning , HeLa Cells , Humans , NF-kappa B/metabolism , Vero Cells , rho GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL